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On the structure of a Taylor column
driven by a buoyant parcel
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The velocity and pressure fields produced in a homogeneous rapidly rotating fluid
driven by an isolated buoyant parcel are investigated. Gravity and rotation are
allowed to have arbitrary orientations and the parcel shape is assumed Gaussian.
Inertial forces and time-dependent effects are ignored. The linear problem is easily
solved by three-dimensional Fourier transform, and the inversion is facilitated by
assuming the Ekman number, E, to be very small. In this limit the fields form a
Taylor column extended in the direction of the rotation axis. In the absence of rigid
boundaries no boundary layers occur. The velocity and pressure in the vicinity of the
parcel are found in closed form while elsewhere (within the Taylor column) they are
expressed in terms of relatively simple scalar integrals which are easily evaluated.

Within the buoyant parcel, the momentum balance is baroclinic, involving Coriolis,
pressure and buoyancy forces. Outside the parcel, the balance is geostrophic at unit
order. The viscous force is important at order E and determines the axial structure of
the Taylor column. In contrast to the case of flow driven by a rigid body, no ‘Taylor
slug’ of recirculating flow occurs. The velocity and pressure decay algebraically with
distance from the parcel, with the scale of variation being a/E in the axial direction
and a in the radial direction, where a is the parcel radius. In the vicinity of the parcel,
the return flow occurs in a broad region surrounding the parcel. The structure of flow
in the vicinity of the parcel is independent of the Ekman number. This return flow
sweeps the fringes of the parcel backward, making the net rise speed significantly
slower than that of a rigid sphere of identical buoyancy. The return flow also acts to
deform the parcel; this deformation is quantified.

1. Introduction
The behaviour of flows in homogeneous, rapidly rotating fluids has fascinated fluid

dynamicists since the prediction and verification of Taylor columns (Proudman 1916;
Taylor 1922, 1923). In such systems the dominant momentum balance is geostrophic
and the Taylor–Proudman theorem states that the velocity is invariant in the direction
of the rotation vector. There are several reasons for the continuing interest in these
flows. One is a desire to better understand the ‘action at a distance’ manifested by
the Taylor–Proudman theorem and how this constraint is mediated by other, weaker
forces. Mediation by the viscous force produces variation of the Taylor column in
the direction of the rotation axis, i.e. the axial direction, on the scale Ωa3/ν where
Ω is the rotation rate, ν is the kinematic viscosity and a is the spatial scale of the
localized disturbance in the plane normal to the rotation axis. This axial variation is
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referred to as structure of the Taylor column in what follows. A second motive is the
desire to understand and quantify the flow field in the vicinity of that body and to
determine what controls that flow. A third is the desire to understand and quantify
the relation between the force on a body (either rigid or fluid) and its velocity. Each
of these issues is addressed in what follows.

If the motions are sufficiently slow and steady that inertial forces are negligible, the
geostrophic balance and axial invariance of a Taylor column is modified by the action
of the viscous force. This modification takes two distinct forms depending on the axial
extent of the fluid, measured from a localized source of motion such as an isolated
rigid body or buoyant parcel. If the axial extent is much less than 2Ωa3/ν, then
viscosity acts to create and maintain thin boundary layers: Ekman layers adjacent to
impenetrable boundaries not parallel to the rotation axis and Stewartson E1/3 and
E1/4 layers parallel to the rotation axis, where E is defined by (1.1) below. In this
case the fluid is said to be contained and the associated columns and layers are well
studied and understood (e.g. see Greenspan 1968; Hide, Ibbetson & Lighthill 1968;
Moore & Saffman 1968, 1969; Bush, Stone & Bloxham 1995).

On the other hand, if the axial extent is much larger than 2Ωa3/ν, then viscosity
causes a slow variation in the structure of the Taylor column with axial distance. This
large-scale structure of a Taylor column is rather poorly understood, in large part
because the mathematical problem posed by an axially unconfined fluid appears more
difficult than that posed by a confined fluid. In what follows attention is focused on
rapidly rotating flows in unconfined fluids.

Such flows can occur in a variety of natural and engineering settings, including
the atmosphere, oceans, Earth’s core and centrifuges. In these settings motions are
typically driven by a parcel of fluid with an excess or deficit of buoyancy. In spite of
this, nearly all previous studies (with the exception of Bush, Stone & Bloxham 1992,
1995) of Taylor-column structure in axially unbounded fluids have concentrated on
effects produced by rigid particles or bodies having a prescribed motion relative to the
rotating fluid, principally motion parallel to the axis of rotation. Unfortunately rapidly
rotating flows driven by rigid bodies are described by dual-integral equations which
are difficult to solve if the Taylor number is very large and this has limited progress
toward understanding the Taylor-column structure. We shall see in the following
sections that flow driven by an isolated buoyant parcel is relatively simpler to solve.

The characterization of a rotating fluid as axially confined or unconfined depends
on the size of the disturbance; any disturbance having a horizontal scale smaller
than (lν/2Ω)1/3, where l is the axial extent of the fluid, is axially unconfined. For
example, the typical depth of the ocean is 5 × 103 m and the kinematic viscosity of
water is roughly 10−6 m2 s−1. With Ω = 7×10−5 s−1, a disturbance smaller than 3 m in
horizontal scale is essentially unconfined at mid-depth in the ocean. A similar result
obtains for the atmosphere with a depth again of several kilometres and a kinematic
viscosity of 1.3× 10−5 m2 s−1. In Earth’s outer core, with a depth of 2× 106 m and a
kinematic viscosity of 5× 10−7 m2 s−1, say, this calculation yields a maximum size of
20 m for an unconfined disturbance.†

The extreme length of the Taylor column is responsible for the rather limited
applicability of those parts of the analysis presented below which deal with the
structure of the Taylor column. However, solutions for flow and pressure in the
vicinity of the parcel, presented in § 7, are believed to have a significantly wider range

† The fluid of the outer core is also subject to the Lorentz force; this quantification is for
illustration only.
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of validity. Preliminary investigations have shown that those solutions are, remarkably,
independent of the nature of the secondary force (e.g. viscous, inertial, stratification
or Lorentz) which balances the Coriolis force, provided only that the Coriolis force
remains dominant. The length of the Taylor column is due to the weakness of the
viscous force relative to the Coriolis force (see § 2.1). The flow adopts a configuration
such that a small departure from precise geostrophy may be balanced by the weak
viscous force. This departure is locally small, requiring cumulative action over a
long axial distance to modify the form of the Taylor column. The severe conditions
on the applicability of the analysis of Taylor-column structure, documented in the
previous paragraph, will be relaxed as additional, stronger forces (e.g. inertial, Lorentz
or stratification) are taken into account and the axial extent of the Taylor column
correspondingly decreases. These forces will be investigated in subsequent studies.

1.1. Scope of the present study

This paper considers the velocity field and pressure generated in a rapidly rotating,
unbounded fluid driven by an isolated buoyant parcel. As will be seen, the associated
mathematical problem is somewhat simpler to analyse and solve than that posed by
either a rigid body in an unconfined fluid or a fluid parcel within a confined fluid.
This simplicity allows consideration of configurations in which gravity and rotation
have arbitrary orientations.

In what follows the fluid is assumed to be rotating sufficiently rapidly that the
Ekman number is much smaller than unity:

E =
ν

2Ωa2
� 1. (1.1)

This provides a small parameter which will be used to advantage. The Rossby number,

Ro =
U

2Ωa
, (1.2)

where U is the characteristic convective speed, is assumed to be sufficiently small that
the inertial force is smaller than the viscous force. This condition is sensitive to the
relative orientation of rotation and gravity. When the two vectors are aligned, it is
sufficient to specify that Ro � 1. However, when they are not aligned, it is shown in
Appendix A that a more restrictive condition is necessary: Ro sin θ � E.
Altogether,

Ro � {E/ sin θ, 1}, (1.3)

where θ is the acute angle between the rotation axis and the gravity vector:
cos θ = |ĝ ·Ω̂|. Here Ω̂ and ĝ are unit vectors pointing in the directions of the rotation
axis and gravity vector, respectively. If rotation and gravity are aligned, θ = 0 and the
constraint in (1.3) involving θ is automatically satisfied. Invariably these vectors are
aligned in laboratory experiments so that constraint is moot. However, in natural set-
tings θ represents the co-latitude and the constraint involving θ in (1.3) is strong, except
near the North and South Poles. In rapidly rotating, buoyancy-driven flows the char-
acteristic speed, U, results from the balance between Coriolis and buoyancy forces:

U =
(∆ρ)g

ρ2Ω
, (1.4)

where g is the magnitude of the local acceleration due to gravity, ρ is the density
of the ambient fluid and ∆ρ is a measure of the density deficit (or excess) of the
parcel. (∆ρ is positive for a density deficit.) Using (1.5) the portion of constraint (1.3)
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involving θ may be expressed as

sin θ � 2Ωνρ

ga∆ρ
. (1.5)

This is in fact a severe constraint, as the right-hand side of (1.6) is typically very small.
Often the Taylor number, T, and Reynolds number, Re, are used in place of

the Ekman and Rossby numbers. These two sets are related by T = 1/E and
Re = Ro/E, and the conditions on the validity of the following analysis are T � 1
and Re � {1/ sin θ,T}. The set E, Ro is used in the following analysis.

1.2. Organization of the paper

The goals of the analysis and the relation to previous work are discussed in § 2. The
mathematical problem is formulated in § 3 and is non-dimensionalized and linearized
on the basis of condition (1.3). With the flow driven by a fluid parcel in an unbounded
domain, there are no rigid boundaries and the (linearized) governing equations are
valid everywhere. This problem is amenable to solution by a three-dimensional Fourier
transform. An important contribution of this paper is the description of a procedure
for inverting the Fourier solution; the details of this are presented in Appendix B. Two
of the inversion integrals can be performed for all values of spatial position, x. The
result is an expression for the velocity vector in terms of a relatively simple set of single
integrals, given in § 4.1. The associated pressure field is found in § 4.2. Simplified forms
of the solutions are described in § 4.3; these are presented in equations (4.20) and (4.21).

The solutions described in § 4.3 involve single integrals having the meridional-plane
coordinates of physical space as parameters. The number of parameters is reduced to
one, making the intergrals amenable to graphical representation, on the modal axis (see
§ 5) and far from the parcel (see § 6). Moreover, the integrals may be evaluated exactly
in the vicinity of the parcel; these solutions are presented in § 7. The rise velocity of
the parcel is evaluated in § 8, and is compared to the velocity of a buoyant rigid parcel.

The problem considered in this paper is kinematic, in that the buoyancy distribution
is prescribed. In reality such a distribution will be deformed by the velocity field. This
deformation is investigated in § 9, and it is found in § 9.1 that the solution obtained in
§ 4 is insensitive to this deformation if rotation and gravity are aligned. The solution
is more sensitive to deformation in the case that rotation and gravity are not aligned;
in § 9.2 a generalized form of the buoyancy distribution is suggested which may yield
a more robust solution. The analysis is summarized and its implications are discussed
in § 10.

2. Goals of the analysis and relation to previous work
In the following sections, attention is focused on the three issues mentioned in the

introductory paragraph: structure of the Taylor column, flow and pressure near the
body and force–velocity relation. These issues and the attention they have received in
the past are discussed in the following subsections.

2.1. Taylor-column structure (at axial distance a/E)

The Taylor–Proudman theorem derives from the curl of the momentum equation.
In the case that the momentum balance involves only Coriolis, pressure and viscous
forces, this states that

2(Ω · ∇)u = ν∇2∇× u. (2.1)
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We infer from this that ∂/∂xΩ = O(ν/2Ωa3) = O(E/a) where xΩ = Ω̂·x, and a caret de-

notes a unit vector, e.g.Ω = ΩΩ̂. To dominant order in powers of E the right-hand side
of (2.1) is negligibly small, so that variations in the direction of rotation are weak. This
conclusion holds provided that the scale of variation normal to rotation is character-
ized by the lateral scale of the body or parcel, i.e. x⊥ = O(a). This is certainly the case
close to the body or parcel. However, if the axial and normal variations are such that

ν(∆xΩ) = O[2Ω(∆x⊥)3], (2.2)

then viscous and Coriolis forces are in balance. This balance will yield the Stewartson
E1/3 layer of confined flows provided the axial extent of the fluid, ∆xΩ , is limited and
prescribed; in this case ∆x⊥ is a small normal (i.e. radial) distance. Alternatively, if
∆x⊥ ≈ a, the usual scaling of the Taylor column is obtained: ∆xΩ ≈ 2Ωa3/ν = a/E.

The asymptotic Taylor-column structure (on an axial scale > a/E) is sensitive only
to the total buoyancy force exerted by a fluid parcel or to the total drag force exerted
by a rigid parcel and is insensitive to the detailed distribution of these forces on the
scale of the parcel or body. Relation (2.2) provides a similarity variable for analysing
this asymptotic structure. It also is of use in analysing the full behaviour of rapidly
rotating flow driven by a point force (e.g. see § 4 of Herron, Davis & Bretherton 1975,
and § 3.4 of Tanzosh & Stone 1994).

2.2. Flow near the parcel

A characteristic feature of Taylor columns driven by rigid bodies moving parallel to
the rotation axis at low Rossby numbers is the occurrence of a column of trapped fluid
moving with the body (Taylor 1922; Stewartson 1952; Long 1953; Pritchard 1969;
Maxworthy 1970; Tanzosh & Stone 1994; Vedensky & Ungarish 1994; Ungarish &
Vedensky 1995). The axial extent of this trapped fluid, referred to as the Taylor slug, is
often used as a measure of the length of the Taylor column. It is seen in § 5 that the situ-
ation is quite different for a Taylor column created by a fluid parcel; no Taylor slug oc-
curs. A possible reason for this difference in flow structure is presented in that section.

There are additional differences in flow structures driven by a rigid body or a fluid
parcel. Flow driven by a rigid body is characterized by Ekman boundary layers on the
body and Stewartson E1/3 and E1/4 layers on the tangent cylinder. Also, the swirl flow
on that cylinder becomes unbounded as the inviscid limit is approached (Stewartson
1952). It turns out that the flow created by a buoyant parcel in an unbounded fluid
lacks viscous boundary layers of any kind; Ekman and Stewartson layers owe their
existence to the presence of rigid boundaries. The flow driven by a buoyant parcel is
‘softer’ than that driven by a rigid body in that there is no singular behaviour on the
tangent cylinder. In fact, parcel-driven flow has no clearly defined tangent cylinder.

Some form of dual integral problem is inevitably encountered in the analysis of flow
driven by a finite rigid body (e.g. Vedensky & Ungarish 1994; Tanzosh & Stone 1995;
Vedensky & Ungarish 1995). The best solution method for such problems, Tranter’s
method (Tranter 1966), although valid for all Taylor numbers, is poorly convergent
at high Taylor number. The method presented below is asymptotically valid for large
Taylor number (small Ekman number) and is in effect complementary to Tranter’s
method. The flow driven by a buoyant parcel is somewhat easier to solve than the
corresponding flow driven by a rigid body; a complete analytic solution for the flow
in the vicinity of a buoyant parcel is presented in § 7.

Equation (2.1) is the simplest form of the Taylor–Proudman theorem, in that
all small forces, other than viscosity, have been ignored. Additional forces which
might enter this balance include inertial, buoyancy (due to ambient stratification) and
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Lorentz. A remarkable and surprising feature of this problem is that the flow and
pressure near the buoyant parcel (presented in § 7) are independent of the Ekman
number. This implies that these near-parcel solutions will remain valid if forces other
than viscous balance the Coriolis force. Since the length of the Taylor column is
proportional to the ratio of the Coriolis to the secondary force, it is possible that
the Taylor column will be significantly shorter when forces other than viscous are
important. This implies that the solution presented in § 7 may have a larger range of
validity than implied by constraint (1.3). This conjecture is beyond the scope of the
present paper, and will be investigated subsequently.

2.3. Force–drag relation

In flows driven by rigid bodies, typically the velocity of the body is specified and the
force is calculated as part of the solution. In the present case of flow driven by a
buoyant parcel, the situation is reversed: the force on the parcel is specified and the
velocity of the parcel is calculated. Stewartson (1952) first obtained a relation between
the drag, Dp, and rise speed, U, of an axisymmetric rigid body moving parallel to the
rotation axis:

Dp = 16
3
ρΩUa3, (2.3)

where a is the radius of the circular ‘foot-print’ of the body in the plane normal to the
rotation axis. Maxworthy (1970) determined experimentally that the drag on a sphere
is 1.52 times this theoretical value. The reason for this discrepancy is unknown. If the
body were a sphere having a density deficit or excess of ∆ρ with gravity and rotation
parallel, then it would rise or sink due to its buoyancy force with speed

Up =
π

2

(
∆ρ

ρ

)
g

2Ω
. (2.4)

Stewartson (1953; see also Tanzosh & Stone 1995) determined that a sphere moving
normal to rotation experiences a drag force

D⊥ =
32π2

3(16 + π2)
ρΩUa3, (2.5)

and a lateral force (lift)

DL =
8π3

3(16 + π2)
ρΩUa3. (2.6)

(In comparing (2.5) and (2.6) with (6.26) and (6.27) of Stewartson (1953), recall that
Ω = 1

2
in his formulation.) If the body were a sphere having a density deficit or excess

of ∆ρ and gravity and rotation were perpendicular, then it would rise or sink due to
its buoyancy force with speed

U⊥ =
16π

16 + π2

(
∆ρ

ρ

)
g

2Ω
, (2.7)

and presumably move laterally at π/4 this speed.
The rise of a buoyant parcel in an unbounded fluid has been investigated by

Moffatt & Loper (1994) in the case that the fluid is electrically conducting and in the
presence of an external magnetic field. The parcel was assumed to be spherical and to
have a Gaussian density distribution. In the limit that magnetic effects are negligible,
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the velocity field at the centre of the parcel was found to be

u(0) =

(
∆ρ

ρ

)
g

2Ω

{
−π

4
[ĝ+ (ĝ · Ω̂)Ω̂] + Ω̂× ĝ

}
. (2.8)

This velocity consists of an in-plane motion, represented by the term on the right-hand
side involving the square bracket and a motion out of the plane defined by Ω̂ and ĝ,
represented by the last term on the right-hand side. The out-of-plane motion does not
contribute to the rise speed of the parcel, but causes it to drift horizontally (specifically
westward). When applied to geophysical problems, the rise speed predicted by (2.8)
depends on the latitude, being twice as fast in polar regions as at the equator.

In the case that rotation and gravity are aligned, the velocity given by (2.8) is in
agreement with (2.4), while if they are orthogonal, (2.8) yields

u⊥(0) =
π

4

(
∆ρ

ρ

)
g

2Ω
, (2.9)

which is considerably slower than the orthogonal speed given by (2.7). The lift force
acting on a fluid parcel also differs from that acting on a rigid body; see § 8.1.

The agreement between (2.8) and (2.4) in the aligned case appears at first glance
to verify that Stewartson’s drag formula (2.3) applies to fluid bodies as well as rigid.
However, this conclusion rests on the assumption, made by Moffatt & Loper (1994),
that the velocity of the fluid at the centre of the parcel is the same as that of the
parcel as a whole. The validity of this assumption is questioned in § 8 and found
wanting.

Bush et al. (1992) considered the motion of a deformable body, specifically an
inviscid drop of liquid which is not miscible with the surrounding fluid, in a rapidly
rotating fluid of limited axial extent. The associated surface tension gives the body
a mechanism to balance the tendency of fluid motions to deform it, leading to an
equilibrium, non-spherical shape of the drop. In a subsequent study (Bush et al.
1995), the problem was generalized to include the effect of non-zero viscosity in the
drop and the effect of removing the axial boundaries to infinity. The behaviour of an
axially unconfined drop was discussed qualitatively, but no mathematical analysis of
the unbounded case was presented.

3. Formulation and transformed solution
The equations governing Taylor-column structure and flow are presented in di-

mensional form in § 3.1 and non-dimensionalized in § 3.2. The buoyancy function is
specified in § 3.2. The problem is linearized and solved in Fourier-transform space in
§ 3.3.

3.1. Conservation equations

The flow associated with the rise of the parcel is assumed to be independent of time,
when viewed in a frame of reference fixed to that parcel. The relative fluid velocity,
ur , (i.e. the fluid velocity relative to the parcel), the laboratory-frame velocity, ul (i.e.
the fluid velocity relative to the quiescent ambient fluid) and the rise velocity, U p, of
the parcel are related by

ur = ul −U p; (3.1)

see figure 1. The rise velocity is to be determined as part of the solution; this is
accomplished in § 8.
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Figure 1. Illustration of the relation among the relative fluid velocity, ur , the laboratory-frame
velocity, ul , and the rise velocity U p.

The Boussinesq equations governing the steady flow of an incompressible fluid
of constant viscosity in a rotating environment, expressed in a rotating frame of
reference fixed to the parcel, are

ρ0[(U p − ul) · ∇]ul − 2ρ0Ω× ul + ρ0ν∇2ul = ∇p− (ρ− ρ0)g, (3.2)

∇ · ul = 0. (3.3)

Here p is the deviation from the hydrostactic pressure and the remaining notation is
standard.

The factor ρ− ρ0 is non-zero only within the buoyant parcel and is assumed to be
prescribed and independent of time. In realilty the flow will deform the parcel, so that
it will be of the prescribed shape only for some (small) interval of time. Deformation
of the parcel by the flow is quantified in § 9.

The assumption of steady flow is valid provided that the Taylor column is estab-
lished on a time short compared with the time of parcel motion and deformation.
The Taylor column is established by the axial propagation and eventual viscous dis-
sipation of inertial waves. Information regarding the position and shape of the fluid
parcel is propagated with the group speed of internal waves, which is of order aΩ. It
takes a time of order 1/Ω for information to propagate in the vicinity of the parcel
and of order a2/ν ≈ 1/EΩ on the scale of the Taylor column. The fluid parcel moves
or deforms only slightly (compared with its radius) in time of order Ω−1 provided that
a/U � 1/Ω or equivalently Ro � 1. But this is assured by condition (1.3). It follows
that the flow in the vicinity of the parcel may be considered steady. A steady Taylor
column is established in a time short compared with the parcel deformation time pro-
vided Ro � E, which is a more restrictive condition. However, it should be noted that
the asymptotic structure of the Taylor column structure (on an axial scale larger than
a/E) is sensitive only to the total applied force (e.g. see Herron et al. 1975; Tanzosh
& Stone 1995) and is insensitive to detailed form of that force on the spatial scale a.
This suggests that the Taylor-column structure would be altered only slightly if the
condition Ro � E were relaxed. This issue will be explored in a subsequent study.

3.2. Non-dimensionalization

In the non-dimensionalization process we shall use the parcel size, a, as the typical
length; although the Taylor column is spatially elongated in the direction of the



A Taylor column driven by a buoyant parcel 139

rotation axis, the fluid within it experiences lateral velocity gradients on the scale of
the parcel. Additionally, let

ul =
(∆ρ)g

2ρΩ
u∗(x∗), (3.4)

p = a(∆ρ)p∗(x∗) (3.5)

and

ρ− ρ0 = −(∆ρ)Ψ ∗(x∗), (3.6)

where an asterisk denotes a dimensionless variable. The problem is viewed from a
coordinate system fixed to the buoyant parcel, with x∗ measuring distance from the
centre of the parcel. The factor (∆ρ) is chosen such that Ψ (0) = 1. Note that u∗ is
the velocity of the fluid as seen by an observer fixed to the far fluid, but expressed in
coordinates moving with the buoyant parcel; it follows that u∗ → 0 as x∗ → ∞.

Now the dominant-order form of (3.2) is (dropping the asterisks)

−Ω̂× u+ E∇2
⊥u = ∇p+Ψ ĝ, (3.7)

where the Ekman number, E, is given by (1.1) and ∇2⊥ = ∇2−∂2/∂x2
Ω is the Laplacian

in the plane normal to the rotation axis. The inertial terms have been neglected on
the basis of assumption (1.3), while the axial viscous term is of smaller order than
that retained since ∂/∂Ω = O(E∂/∂x⊥). Note that the upward unit vector ê used by
Moffatt & Loper (1994) is related to ĝ by ê = −ĝ. Equation (3.7) is equivalent to
equation (10′) of that paper.

3.3. Modal equation and transformation

Equation (3.3) and (3.7) can be combined into a single modal equation for u following
the procedure described by Moffatt & Loper (1994). (Take the curl of (3.7) twice and
eliminate the vorticity vector between these two equations.) Again neglecting terms
of order E∂2/∂x2

Ω , the result is

[E2∇6
⊥ + (Ω̂ · ∇)2]u = −(Ω̂ · ∇)ĝ× ∇Ψ + E∇2

⊥∇× [ĝ× ∇Ψ ]. (3.8)

This equation is to be solved subject to the condition that the velocity decays to
zero at sufficiently large distance from the buoyant parcel. Flow is forced by the
terms on the right-hand side of (3.8). Note the baroclinic nature of this forcing; if the
density gradient were parallel to gravity, there would be no forcing. The solution has
a baroclinic form within the parcel and a geostrophic form outside.

The modal equation is easily solved in Fourier-transform space. Let us introduce
the Fourier transform and inverse:

f̃(k) =

∫
x

f(x) exp (ik · x)d3x, (3.9)

f(x) =
1

(2π)3

∫
k

f̃(k) exp (−ik · x)d3k. (3.10)

The Fourier transform of (3.8) yields

ũ(k) =
k × [(Ω̂ · k)ĝ+ Ek2⊥(k × ĝ)]

(Ω̂ · k)2 + E2k6⊥
Ψ̃ (k), (3.11)

where k2⊥ = k · k − (Ω̂ · k)2. The Fourier transform was used by Childress (1964) and
Tanzosh & Stone (1994) to obtain a Green’s function for flow driven by a rigid body,



140 D. E. Loper

by Herron et al. (1975) to analyse the far-field flow associated with a sedimenting
sphere and by Moffatt & Loper (1994) in an analysis of hydromagnetic flow driven
by a buoyant parcel. Note that ũ(k) has the same symmetry in k, i.e. either odd or
even, as Ψ̃ (k).

The problem is completed by specification of the buoyancy distribution, which
drives the flow. A physically plausible form, which is amenable to mathematical
analysis, is the Gaussian distribution employed by Moffatt & Loper (1994); let

Ψ (x) = exp (−x2), (3.12)

where x is the distance from the centre of the buoyant parcel. The Fourier transform
of (3.12) is

Ψ̃ (k) = π3/2 exp (−k2/4). (3.13)

The problem under consideration is linear, so that a more general solution would
consist of a sum of buoyant parcels of the form (3.12) with differing magnitudes of
density contrast and differing radii. This property provides some generality to the
present formulation.

In the following section the velocity vector and associated pressure field are inverted
for a general point x. The result is summarized in equations (4.20) and (4.21).

4. Fourier inversion
A distinct advantage of the present problem with flow driven by a fluid parcel,

as opposed to the problem of flow driven by a rigid body, is that the transform is
valid for all space. Consequently no dual integral equations are encountered in the
inversion process and the integrals are somewhat easier to evaluate.

4.1. Velocity field

Dominant-order contributions to the inversion of (3.11) come from those regions of
k-space for which |ũ| = O(1/∆k), where ∆k is a measure of the size of that region.
With E � 1, there are two such regions. One region, having ∆k of unit order, governs
the structure of the baroclinic flow on the scale of the buoyant parcel and the second,

characterized by Ω̂ · k̂ � 1, governs the geostrophic structure of the Taylor column.
In the following analysis, it will be convenient to decompose the wavenumber vector
into components parallel and perpendicular to the rotation axis; let

k = kΩΩ̂+ k⊥ = kΩΩ̂+ k⊥k̂⊥. (4.1)

This decomposition of the wavenumber vector introduces a cylindrical coordinate
system to guide the inversion integrals. Inversion in the angular direction can be
accomplished without approximation; this will be done first. The second inversion in
the axial direction can be accomplished to any desired order in powers of E; in what
follows each velocity component is correctly expressed at unit order and the radial
velocity at order E. The third inversion in the radial direction can be accomplished in
closed form within and near the parcel. The resulting inversions will involve a similar
cylindrical representation of the position vector:

x = xΩΩ̂+ x⊥ = xΩΩ̂+ x⊥x̂⊥. (4.2)

The Fourier inversions for the angular and axial wavenumbers are presented in
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Appendix B. The results may be expressed as

u(x) = −ĝ× [Vs12(x⊥, xΩ)x̂⊥ + exp (−x2)Ω̂]− 1

x⊥
Vc11(x⊥, xΩ)[ĝ+ (ĝ · Ω̂)Ω̂]

+[x̂⊥ × ĝ]× [Vc22(x⊥, xΩ)x̂⊥ − EVs14(x⊥, xΩ)Ω̂], (4.3)

where

Vcmn(x⊥, xΩ) =

√
π

4

∫ ∞
0

HcJm(x⊥k⊥) exp

(
−k

2⊥
4

)
kn⊥ dk⊥, (4.4)

Vsmn(x⊥, xΩ) =

√
π

4

∫ ∞
0

HsJm(x⊥k⊥) exp

(
−k

2⊥
4

)
kn⊥ dk⊥, (4.5)

Hc(k⊥; xΩ) = cosh (ExΩk
3
⊥)− erf (xΩ) sinh (ExΩk

3
⊥) (4.6)

and

Hs(k⊥; xΩ) = sinh (ExΩk
3
⊥)− erf (xΩ) cosh (ExΩk

3
⊥). (4.7)

For xΩ of unit order Vcmn > 0 and the sign of Vsmn is opposite to that of xΩ .
Equation (4.3) quantifies the velocity field in terms of a set of four single integrals

defined by (4.4) and (4.5). A simpler form of u(x) is presented in § 4.3, following
solution in § 4.2 for the pressure field.

4.2. Pressure field

The dynamic pressure field associated with this solution satisfies

∇p = −Ψ ĝ− Ω̂× u+ E∇2
⊥u. (4.8)

The viscous term must be kept, as it has a cumulative, dominant-order effect within
the Taylor column. Combining the dot product of (4.8) with Ω̂, (4.3), leads to

∂p

∂xΩ
= −[E∇2

⊥Vc02 + exp (−x2)][ĝ · Ω̂] + E∇2
⊥([ĝ× Ω̂ · x̂⊥]Vs12). (4.9)

This equation is integrated in Appendix C; the result is

p(x) = Vs01(x⊥, xΩ)[ĝ · Ω̂]− Vc11(x⊥, xΩ)[ĝ× Ω̂ · x̂⊥]. (4.10)

The solution (4.10) has been obtained by integrating the axial component of the
momentum equation, which is dominated by the non-geostrophic viscous term. The
geostrophic components of (4.8) provide a check on the solution. It is straight-forward
but tedious to confirm that solutions (4.3) and (4.10) satisfy the geostrophic equation
to dominant order in E.

4.3. Simplified solutions

Representations (4.3) and (4.10), quantifying the velocity and pressure fields as func-
tions of position, involve integrals (4.4) and (4.5), the form of which makes them
rather difficult to integrate numerically. In this subsection alternative expressions are
presented, which are identical at dominant order in powers of E and which are more
amenable to numerical evaluation.

Simpler forms of Hc and Hs, equivalent to definitions (4.6) and (4.7) at dominant
order, are

Hc ≈ exp (−E|xΩ |k3
⊥) (4.11)
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and

Hs = −erf (xΩ)Hc. (4.12)

Using these, the factors Vcmn and Vsmn which appear in (4.3) and (4.10) may be
expressed in simpler form:

Vc11 = 1
4
πx⊥T1, (4.13)

Vc22 = 1
2
π(T1 − S2), (4.14)

Vs01 = − 1
2

√
π erf (xΩ)S1, (4.15)

Vs12 = −√π erf (xΩ)x⊥T2, (4.16)

and

Vs14 = −8
√
π erf (xΩ)x⊥T4, (4.17)

where

Sn(x⊥, xΩ) =

∫ ∞
0

kn⊥J0(x⊥k⊥)

2nΓ[(n+ 1)/2]
exp (−E|xΩ |k3

⊥ − 1
4
k2
⊥)dk⊥ (4.18)

and

Tn(x⊥, xΩ) =

∫ ∞
0

kn⊥J1(x⊥k⊥)

2nΓ[(n+ 2)/2]x⊥
exp (−E|xΩ |k3

⊥ − 1
4
k2
⊥)dk⊥. (4.19)

The integrals Sn and Tn have been normalized such that Sn(0, 0) = Tn(0, 0) = 1. (More
precisely, Sn(x⊥, 0) ∼ 1− 1

2
(n+ 1)x2⊥ and Tn(x⊥, 0) ∼ 1− 1

4
(n+ 2)x2⊥ for small x⊥.)

Now

u(x) = −ĝ× [
√
π erf (xΩ)T2(x⊥, xΩ)x⊥ − exp (−x2)Ω̂]− 1

4
πT1(x⊥, xΩ)[ĝ+ (ĝ · Ω̂)Ω̂]

+[x̂⊥ × ĝ]×
{
π

2

[
T1(x⊥, xΩ)− S2(x⊥, xΩ)

x2⊥

]
x⊥+8

√
πE erf (xΩ)T4(x⊥, xΩ)Ω̂

}
(4.20)

and

p(x) = − 1
2

√
π erf (xΩ)S1(x⊥, xΩ)[ĝ · Ω̂] + 1

4
πT1(x⊥, xΩ)[Ω̂× ĝ · x⊥]. (4.21)

Note the change from x̂⊥ to x⊥.

4.4. Gravity and rotation antiparallel

In the case that g and Ω are antiparallel (4.20) and (4.21) simplify to

u(x) = 1
2
πS2(x⊥, xΩ)Ω̂+ 8

√
πE erf (xΩ)T4(x⊥, xΩ)x⊥

−√π erf (xΩ)T2(x⊥, xΩ)[Ω̂× x⊥] (4.22)

and

p(x) = 1
2

√
π erf (xΩ)S1(x⊥, xΩ). (4.23)

The first and second terms on the right-hand side of (4.22) represent an axisymmetric
meridional flow. The stream function for this flow (as defined by Batchelor 1967, eqn
(2.2.11)) is

ψ(x) = 1
4
πx2
⊥T1(x⊥, xΩ). (4.24)

Isolines of the stream function are plotted on a meridional cross-section in figures
2(a) and 2(b). Note that these cross-sections are on the Taylor-column scale. On this
scale the fluid parcel has no finite axial extent and lies on the horizontal axis of the
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Figure 2. (a, b) Isoline plots of the stream function in the antiparallel case depicted on a
meridional cross-section.

figures. The figures are symmetric about the equatorial plane of the parcel; the lower
half is not shown. Note the similarity of the isolines of figure 2(a) to those depicted
in figure 3(a) of Tanzosh & Stone (1994).

Flow is parallel to the isolines. Where the isolines are horizontal, the axial velocity
component is zero and where vertical, the radial velocity is zero. Fluid near the
symmetry axis lying above the parcel, satisfying x⊥ < Y (xΩ), moves upward and
(weakly) radially outward, while fluid farther out, satisfying Y (xΩ) < x⊥, moves
downward and alternately outward and inward as x⊥ increases. The first alternation
in sign of radial velocity component is evident in figure 2(a, b). The function Y (xΩ) is
found by solving the implicit equation S2(x⊥, xΩ) = 0, that is,∫ ∞

0

k2
⊥J0(x⊥k⊥) exp (−E|xΩ |k3

⊥ − 1
4
k2
⊥)dk⊥ = 0. (4.25)

The function Y (xΩ) is graphed in figure 3. This displays a physical meridional cross-
section on the scale of the Taylor column. On this scale the fluid parcel has no finite
axial extent and lies on the horizontal axis of the figure. The figure is symmetric
about the equatorial plane of the parcel; the lower half is not shown. This graph
of x⊥ = Y (xΩ) does not intercept the x⊥-axis vertically on the Taylor-column scale
depicted in figure 3; on the scale of the parcel, the flow structure is axially invariant
at dominant order. As x⊥ becomes large, the curve asymptotes to 0.0386613x3⊥.

The third term of equation (4.22) describes a swirl that is retrograde ahead of the
parcel and prograde behind. This swirl is in geostrophic balance with the pressure
given by (4.23). The swirl and pressure are antisymmetric about the equatorial plane
of the parcel (i.e. the plane defined by xΩ = 0) and have structure on both the scale
of the parcel, quantified by the error function, and on the scale of the Taylor column,
quantified the functions Sn and Tn. Isolines of the swirl angular velocity, us/x⊥, and
pressure are quantified by

us(x)/x⊥ = −√πT2(x⊥, xΩ)/x⊥ (4.26)

and (4.23). Formula (4.26) is valid provided xΩ is positive and much larger than unity;
if xΩ < 0 the swirl velocity has the opposite sign. Isolines of us/x⊥ and p are plotted
in figures 4(a) and 4(b). The similarity between the two is due to the geostrophic
balance in the Taylor column, between the swirl angular velocity and the gradient
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Figure 3. Depiction of regions of upward flow and counter flow on the meridional plane at the
Taylor-column scale in the antiparallel case.

of the pressure. A comparable plot of the swirl driven by a point force is given in
figure 3(b) of Tanzosh & Stone (1994). The swirl produced by a spatially extended
fluid parcel is significantly larger than that produced by a point force. The differences
between these two representations are due to two factors. First, the dominant balance
near the point force is Stokesian rather than geostrophic and the source producing
the isolines of figure 4(a) is of finite horizontal extent. On the scale of this figure
the buoyant parcel has an infinitesimal axial extent. The swirl angular velocity and
pressure are each a maximum on the symmetry axis adjacent to the fluid parcel, i.e.
at the origin in figure 4(a, b).

Outside the parcel, the pressure distribution given by (4.23) integrates to give a
force

FP = 2π

∫ ∞
0

p(x)x⊥ dx⊥ = sgn (xΩ)π3/2

∫ ∞
0

S1(x⊥, xΩ)x⊥ dx⊥, (4.27)

pointing opposite to gravity. This force exactly balances the buoyancy force of the
parcel provided ∫ ∞

0

S1(x⊥, xΩ)x⊥ dx⊥ = 1
2
. (4.28)

The validity of this condition may be demonstrated as follows. Eliminate S1 with
(4.18), use the identity zJ0(z) = d[zJ1(z)]/dz and then integrate by parts over k⊥.
Next interchange the order of integration and integrate over x⊥ and k⊥ in turn.

4.5. Gravity and rotation perpendicular

In the case the g and Ω are perpendicular, solutions (4.20) and (4.21) simplify to

u(x) = ĝ× [
√
π erf (xΩ)T2(x⊥, xΩ)x⊥ − exp (−x2)Ω̂]

−π
4
T1(x⊥, xΩ)ĝ+

π

2

[
S2(x⊥, xΩ)− T1(x⊥, xΩ)

x2⊥

]
x⊥ × [x⊥ × ĝ] (4.29)
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Figure 4. Isolines of (a) the swirl angular velocity and (b) pressure for the case when rotation and
gravity are aligned.

and

p(x) = − 1
4
π[ĝ× Ω̂ · x⊥]T1(x⊥, xΩ). (4.30)

The flow in this case is more complicated than in the antiparallel case of § 4.4,
now being a function of all three spatial coordinates, and is not easily summarized
graphically. Rather than attempting a graph for this special case, attention will now
be returned to the general case.

Although the integrals Sn and Tn cannot be evaluated in closed form for all values of
xΩ and x⊥, the behaviour in several regions of physical space is relatively simple and
illuminating. This behaviour is investigated in the following three sections. Specifically
the velocity and pressure along the modal axis (i.e. where x⊥ = 0) are discussed in
§ 5, far from the parcel in the direction of the Taylor column (i.e. where E|xΩ | � 1)
are investigated in § 6 and in the vicinity of the parcel (where E|xΩ | � 1) are studied
in § 7.

5. Velocity and pressure at the origin and on the modal axis
Since the integrals Sn and Tn have been normalized, the velocity at the origin for

general orientation of gravity and rotation is easily evaluated; (4.20) yields

u(0) = − 1
4
π[ĝ+ (ĝ · Ω̂)Ω̂] + Ω̂× ĝ. (5.1)

This dimensionless velocity is identical to the dimensional version given in equation
(2.8). The latter was found by Moffatt & Loper (1994) for a parcel in a rotating
hydromagnetic fluid. However, as we shall see in § 8, this is not the rise velocity of
the parcel as Moffatt & Loper had assumed.

The modal axis is that line in space parallel to the axis of rotation, having x⊥ = 0.
On that axis, solutions (4.20) and (4.21) simplify to

u(xΩΩ̂) = [Ω̂× ĝ] exp (−x2
Ω)− [ĝ+ (ĝ · Ω̂)Ω̂]U(xΩ) (5.2)

and

p(xΩΩ̂) = −[ĝ · Ω̂] erf (xΩ)P (xΩ), (5.3)
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where

U(xΩ) =

√
π

8

∫ ∞
0

k2
⊥ exp (−E|xΩ |k3

⊥ − 1
4
k2
⊥) dk⊥ (5.4)

and

P (xΩ) =

√
π

4

∫ ∞
0

k2
⊥ exp (−E|xΩ |k3

⊥ − 1
4
k2
⊥) dk⊥. (5.5)

Note that U(0) = π/4 and P (0) =
√
π/2.

The velocity on the modal axis is symmetric about the equatorial plane of the
parcel, while the pressure is antisymmetric. The velocity and pressure have variations
on both the scale of the parcel (quantified by the error function) and the scale of the
Taylor column (quantified by U and P ). In the vicinity of the parcel they behave as

u(xΩΩ̂) = [Ω̂× ĝ] exp (−x2
Ω)− π

4
[ĝ+ (ĝ · Ω̂)Ω̂] (5.6)

and

p(xΩΩ̂) = −
√
π

2
[ĝ · Ω̂] erf (xΩ). (5.7)

Outside the parcel (i.e. where |xΩ | � 1) the velocity and pressure are

u(xΩΩ̂) = −U(xΩ)[ĝ+ (ĝ · Ω̂)Ω̂] (5.8)

and

p(xΩΩ̂) = −[ĝ · Ω̂] sgn (xΩ)P (xΩ). (5.9)

Note that in the antiparallel case, the speed at the origin is 2U.
The variations of functions U(xΩ) and P (xΩ) with axial distance are shown in figure

5. Note that the horizontal axis of this figure depicts the Taylor-column scale, which
is a very large axial distance when measured by the scale of the parcel. It is seen that
the velocity and pressure initially decrease rapidly with axial distance. Specifically,
when E|xΩ | � 1,

U ≈ 1
4
π− 8

√
πE|xΩ | ≈ 0.785398− 14.1796E|xΩ | (5.10)

and

P ≈ 1
2

√
π− 3πE|xΩ | ≈ 0.886227− 9.42476E|xΩ |. (5.11)

Experimental studies of the structure of a Taylor column (Taylor 1922; Pritchard
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1969; Maxworthy 1970) find that a ‘Taylor slug’ of fluid moves with the rigid body
generating the column. The existence of this slug of recirculating fluid has been
confirmed theoretically by Vedensky & Ungarish (1994) for axial flow of a circular
disk and by Tanzosh & Stone (1994) for axial flow of a sphere. In fact, the former
authors defined the axial extent of the Taylor column by the location of the upper
stagnation point. It is clear from figure 5 that no such region exists in a Taylor column
produced by a buoyant parcel. It is shown in § 7 that flow driven by axial motion
of a fluid parcel is non-uniform; the axial flow diminishes with distance from the
symmetry axis. It is likely that this flow structure serves to ‘streamline’ the parcel and
allow the fluid in the Taylor column to move radially outward then axially backward
relative to the parcel in a smooth fashion. This smoothing is evident in the fact that
the buoyant parcel does not produce any singularity, such as that which occurs at the
circumference of a circular disk (Vedensky & Ungarish 1994).

Maxworthy (1970) found that the Taylor slug is typically O(0.1a/E) in axial extent
and the result of Vedensky & Ungarish (1994) is in general agreement with this
observation; they located the upper stagnation point at a distance 0.051/E from the
disk. Figure 5 and (5.10) are in rough agreement with these observations; the axial
velocity decays rapidly with distance from the body, reaching 50% of its maximum
value roughly at E|xΩ | ≈ 0.1. However, note that there is a long tail extending fore
and aft of the parcel; the velocity and pressure decay algebraically with axial distance:

U(xΩ) ≈
√
π

24E|xΩ | ≈
0.073852

E|xΩ | (5.12)

and

P (xΩ) ≈ πΓ(5/6)

6(2)1/3(3)1/2Γ(2/3)(E|xΩ |)2/3
≈ 0.20001

(E|xΩ |)2/3
. (5.13)

An algebraic decay of pressure is necessary if it is to balance buoyancy at all axial
positions; see (4.27) and (4.28).

6. Velocity and pressure far from the parcel
In this section expressions (4.20) and (4.21) for the velocity and pressure are

evaluated sufficiently far from the parcel that E|xΩ | � 1. In this limit, dominant-
order contributions to the integrals defined by (4.18) and (4.19) occur where k⊥ � 1.
It follows that the factor k2⊥/4 in the exponentials of these integrals may be ignored.
Physically this implies that the far-field behaviour is independent of the structure of
the buoyant parcel, and is sensitive only to the total buoyancy. It follows that the
results of this section are expected to be valid for fluid parcels having a shape other
than Gaussian and for solid bodies having the same total buoyancy as the Gaussian
parcel.

In this limit the integrals Sn and Tn, which are in general functions of two variables,
xΩ and x⊥, may be expressed in terms of integrals involving a single similarity variable,

ξ = x⊥/(E|xΩ |)1/3. (6.1)

Note the occurrence of the 1/3 power in this variable; the asymptotic structure of
the Taylor column is determined by the same dynamical balance as Stewartson’s E1/3

sidewall layer (Stewartson 1957). In a closed container having xΩ = O(1), ξ is of unit
order when x⊥ = O(E1/3); this is the structure of a Stewartson layer. In the present
case, both xΩ and x⊥ are large, but with ξ = O(1). Now (4.18) and (4.19) may be
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expressed as

Sn(x⊥, xΩ) =
Γ[(n+ 1)/3]

3(2n)Γ[(n+ 1)/2](E|xΩ |)(n+1)/3
sn(ξ) (6.2)

and

Tn(x⊥, xΩ) =
Γ[(n+ 2)/3]

2n+1 3Γ[(n+ 2)/2](E|xΩ |)(n+2)/3
tn(ξ), (6.3)

where

sn(ξ) =

∫ ∞
0

3qnJ0(ξq)

Γ[(n+ 1)/3]
exp (−q3) dq (6.4)

and

tn(ξ) =

∫ ∞
0

6qnJ1(ξq)

Γ[(n+ 2)/3]ξ
exp (−q3) dq. (6.5)

The functions sn(ξ) and tn(ξ) have been normalized so that sn(0) = tn(0) = 1. The
asymptotic behaviour of these integrals can be determined by expressing the Bessel
functions J0 and J1 in terms of the modified Bessel functions, K0 and K1, then starting
the integration along the imaginary q-axis. The results of interest are

s1(ξ) ∼ − 27

Γ[2/3]

1

ξ5
, (6.6)

s2(ξ) ∼ −3/ξ3, (6.7)

t1(ξ) ∼ 6/ξ3, (6.8)

t2(ξ) ∼ − 270

Γ[4/3]

1

ξ7
, (6.9)

and

t4(ξ) ∼ 9450/ξ9. (6.10)

Numerical comparisons using Mathematica reveal that these asymptotic formulas
should be used in place of (6.4) and (6.5) when ξ > 15.

Substitution of (6.2) and (6.3) into (4.20) and (4.21) yields

u(x) ∼ −
√
π

24E|xΩ | t1(ξ)[ĝ+ (ĝ · Ω̂)Ω̂] + sgn (xΩ)
Γ[4/3]

√
π

24E|xΩ | ξt2(ξ)(ĝ× x̂⊥)

+

√
π

12E|xΩ | [s2(ξ)− t1(ξ)]x̂⊥ × (x̂⊥ × ĝ)

− sgn (xΩ)

√
πE

24(E|xΩ |)2
ξt4(ξ)Ω̂× (x̂⊥ × ĝ) (6.11)

and

p(x) ∼ −
√
π

24(E|xΩ |)2/3
[ sgn (xΩ)2Γ( 2

3
)[ĝ · Ω̂]s1(ξ) + [ĝ× Ω̂ · x̂⊥]ξt1(ξ)]. (6.12)

Each of the terms in (6.11) and (6.12) is a function of the similarity variable ξ divided
by a power of E|xΩ |, indicating an algebraic decay in the axial direction. This far-field
flow is geostrophic; |u|−1| du/dxΩ | = O(E) and p−1 dp/dxΩ = O(E).
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6.1. Gravity and rotation antiparallel

This far-field solution can best be understood in the antiparallel case; now (6.11) and
(6.12) simplify to

u(x) ∼
√
π s2(ξ)

12E|xΩ | Ω̂+ sgn (xΩ)

√
π

24E2x2
Ω

t4(ξ)x̂⊥ − sgn (xΩ)

√
πΓ(1/3)

12E|xΩ | ξt2(ξ)(Ω̂× x̂⊥)

(6.13)

and

p(x) ∼ − sgn (xΩ)
Γ[2/3]

√
π

12(E|xΩ |)2/3
s1(ξ). (6.14)

The structures of the components of the velocity field and the pressure as functions
of ξ are quantified in figure 6.

The first term on the right-hand side of (6.13) represents vertical motion within
the Taylor column and the second represents the associated small radial flow. These
functions are plotted versus ξ in figures 6(a) and 6(b). The axial velocity decays as
ξ−3 while the radial velocity decays as ξ−9. The stream function for this flow may be
expressed as

ψ(x) =

√
πξ2t1(ξ)

24(E|xΩ |)1/3
=

√
πx2⊥t1(ξ)

24E|xΩ | . (6.15)

This function is plotted versus ξ in figure 6(c). Note that the stream function decays
slowly with both increasing axial distance and increasing similarity variable: as |xΩ |−1/3

and ξ−1.
A co-axial swirl, which develops due to the radial motion, is represented by the third

term on the right-hand side of (6.13) and plotted versus ξ in figure 6(d). The swirl
is retrograde ahead of the parcel and prograde behind. The pressure field associated
with this swirl is quantified by (6.14) and plotted versus ξ in figure 6(e).

On the modal axis (i.e. where ξ = 0), (6.13) yields an axial speed which varies as√
π/12E|xΩ | at large distances, which is in agreement with (5.8) and (5.12). It may be

seen from figure 6(b) that the axial speed is zero when ξ ≈ 2.957. This quantifies the
asymptotic behaviour of the curve graphed in figure 3. Fluid in the region satisfying
x⊥ < 2.957(E|xΩ |)1/3 is moving in the same direction as the parcel while fluid in the
region satisfying x⊥ > 2.957(E|xΩ |)1/3 is moving oppositely.

6.2. Gravity and rotation orthogonal

In this case the solution can be compared with the asymptotic flow produced by the
translation of a rigid sphere found by Herron et al. (1975). Although that analysis was
limited to small Taylor number Ta, the asymptotic structure of the outer flow field at

order T
1/2
a is identical to that for large Taylor number considered here. Specifically

equations (2.23a, b, c) of Herron et al. may be compared with the first three terms of
(6.6) with gravity and rotation assumed orthogonal.

That outer flow field is associated with motion in the negative h1-direction. At small
Taylor number, the drag is parallel to the motion; a force must be applied to the
sphere in the negative h1-direction. In the present case flow is driven by a buoyancy
force in the direction opposite to gravity (provided ∆ρ > 0). It follows that we may
associate {h1, h2, h3} with {ĝ, Ω̂× ĝ, Ω̂} and write

u(x) = u′ĝ+ v′(Ω̂× ĝ) + w′Ω̂, (6.16)

with the velocity components having the same physical meaning as those employed
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Figure 6. Plots of the normalized (a) axial velocity, (b) radial velocity, (c) stream function, (d) swirl
velocity and (e) far pressure field as a function of the similarity variable in the case that rotation
and gravity are co-linear.

by Herron et al. (1975). Using (6.16) and noting that α is the angle between x̂⊥ and
ĝ, (6.11) may be written as

u′ ∼ −
√
π

24E|xΩ | {s2(ξ) + [s2(ξ)− t1(ξ)] cos (2α)}, (6.17)

v′ ∼
√
π sin (2α)

24E|xΩ | [s2(ξ)− t1(ξ)], (6.18)

w′ ∼ Γ[1/3]
√
π cos (α)

72ExΩ
ξt2(ξ), (6.19)
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for the fluid parcel. Noting that∫ ∞
0

q2J0(ξq) exp (−q3) dq = 1
3
s2(ξ), (6.20)

∫ ∞
0

q2J1(ξq) exp (−q3) dq = 1
18

Γ(1/3)ξt2(ξ), (6.21)∫ ∞
0

q2J2(ξq) exp (−q3) dq = 1
3
[t1(ξ)− s2(ξ)], (6.22)

equations (2.23a, b, c) of Herron et al. may be expressed as

u′ ∼ − 1

4|z′| {s2(ξ) + [s2(ξ)− t1(ξ)] cos (2α)}, (6.23)

v′ ∼ sin (2α)

4|z′| [s2(ξ)− t1(ξ)], (6.24)

w′ ∼ Γ[1/3] cos (α)

12z′
ξt2(ξ). (6.25)

It is readily apparent that the two solutions have the same structure. The amplitudes
are identical as well provided that z′ is associated with 6ExΩ/

√
π. This provides a

valuable check on the validity and accuracy of the present solution.

7. Velocity and pressure fields close to the parcel
If E|xΩ | � 1, then the terms in the integrals defined by (4.18) and (4.19) involving

this factor are negligibly small. The simplified integrals may be evaluated using
Watson (1966 formulas 13.3(4) and (5), p. 394 with ν = 0, 1, a = x⊥, p2 = 1/4, plus
their derivatives). The dominant-order results may be expressed compactly as

u(x) = ĝ× ∇Φ(x⊥, xΩ) + Ω̂× ∇Ψ (x⊥) + [π/4]∇2f0(x⊥)[ĝ · Ω̂]Ω̂ (7.1)

and

p(x) = [ĝ · Ω̂]Φ(x⊥, xΩ) +Ψ (x⊥), (7.2)

where

Φ[x⊥, xΩ] = −[
√
π/2] erf (xΩ) exp (−x2

⊥), (7.3)

Ψ (x⊥) = (π/4)[f1(x⊥)− f0(x⊥)]ĝ× Ω̂ · x⊥, (7.4)

and

fn(x⊥) = exp (−x2
⊥/2)In(x

2
⊥/2). (7.5)

Here In is a modified Bessel function. Note that (7.1)–(7.5) represents a complete
analytic solution of the flow and pressure in the vicinity of the buoyant parcel.

A more explicit and useful representation of the solution is

u(x) = − 1
4
π[f0(x⊥)− f1(x⊥)][ĝ+ (ĝ · Ω̂)Ω̂] +

√
π erf (xΩ) exp (−x2

⊥)(ĝ× x⊥)

+ exp (−x2)(Ω̂× ĝ) +
π

2

[
f0(x⊥)−

(
1 +

1

x2⊥

)
f1(x⊥)

]
x⊥ × (ĝ× x⊥) (7.6)

and

p(x) = − 1
2

√
π[ĝ · Ω̂] erf (xΩ) exp (−x2

⊥)− 1
4
π[ĝ× Ω̂ · x⊥][f0(x⊥)− f1(x⊥)]. (7.7)
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The velocity and pressure within the domain of the buoyant parcel satisfy a
baroclinic balance, while outside the parcel the balance is geostrophic. On the scale
considered in this section, this geostrophic balance is axially invariant, in accordance
with Taylor’s theorem. The fluid flow in the vicinity of the parcel, quantified by the
four terms on the right-hand side of (7.6), respectively consists of:

(i) a geostrophic motion in the direction of rise (having an area average identically
zero) which decays algebraically (as 1/x3⊥) in the radial direction;

(ii) a swirl normal to the gravity vector decaying exponentially in the radial
direction, which is baroclinic within the domain of the parcel (behaving as the error
function in the axial direction) and geostrophic outside;

(iii) a baroclinic out-of-plane motion confined to the domain of the buoyant parcel
(i.e. decaying exponentially in the radial and axial directions);

(iv) an azimuthally modulated geostrophic motion, which is zero on the modal
axis and decays algebraically (as 1/x3⊥) in the radial direction. This motion is zero on
the modal axis, so that it does not contribute to the rise velocity. It acts to change
the cross-sectional shape of the parcel from circular to elliptic.

The structure of the pressure field is somewhat simpler than that of the velocity
field, consisting of the two terms on the right-hand side of (7.7):

(i) a pressure that is radially confined to the domain of the parcel, and antisym-
metric in the axial direction. The pressure force associated with this term is responsible
for balancing the buoyancy force and swirl within the parcel and balancing the swirl
outside the parcel, within the Taylor column;

(ii) an azimuthally modulated pressure that decays algebraically (as 1/x2⊥) in the
radial direction and is symmetric in the axial direction. The gradient of this pressure
balances the modulated geostrophic motion.

The velocity at the centre of the parcel may be obtained by setting xΩ = x⊥ = 0
in (7.6); this yields (5.1). This result is in agreement with the non-magnetic version
of the velocity obtained by Moffatt & Loper (1994); see (2.8). The pressure is zero at
the parcel centre by symmetry.

7.1. Gravity and rotation antiparallel

If gravity and rotation are antiparallel, (7.6) and (7.7) simplify to

u(x) = 1
2
π[(1− x2

⊥)f0(x⊥) + x2
⊥f1(x⊥)]Ω̂−√π erf (xΩ) exp (−x2

⊥)Ω̂× x⊥ (7.8)

and

p(x) = 1
2

√
π erf (xΩ) exp (−x2

⊥). (7.9)

This flow consists of motion in the axial direction which extends beyond the lateral
confines of the parcel plus a swirl within the lateral confines of the parcel. Outside
the parcel, the Coriolis force of the swirl is balanced by the pressure gradient. Within
the parcel, the Coriolis, pressure and buoyancy forces are in balance.

The structure of the axial flow as a function of radius, x⊥, in the antiparallel
case is given in figure 7. Also plotted for comparison is the exponential function
exp (−x2⊥). The axial flow has the property that its area average is zero. This property
necessarily requires a region of counter (downward) flow outside the primary Taylor
column; this region occurs for x⊥ > 1.257 as seen in figure 7. This axial counter flow
decays algebraically with radial distance from the parcel: u · Ω̂ ∼ −√π/4x3⊥. This
behaviour is in agreement with that deduced by Stewartson (1953; see his equation
5.10), although the numerical factors differ. Return flow in a broad region around the
body has not been found in previous studies of Taylor columns, with the exception
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Figure 7. A graph of the axial velocity component in the vicinity of the parcel in the antiparallel
case, together with the buoyancy function.

of the pioneering work of Stewartson (1952, 1953) and the study of Tanzosh & Stone
(1994). In more recent studies, the return flow has been assumed to occur within thin
Stewartson layers on the tangent cylinder; e.g. see Bush et al. (1995, figure 1). These
layers do not arise in the case of flow driven by a buoyant parcel. In fact, the tangent
cylinder cannot be defined for a parcel having a smooth distribution of buoyancy.

Outside the parcel, the pressure distribution given by (7.9) integrates to give a force

Fp = sgn (xΩ)π3/2/2, (7.10)

which exactly balances the buoyancy force of the parcel.

7.2. Comments on the structure and validity of the near-parcel solution

The question naturally arises regarding the origin of the broad region of return flow
in the vicinity of the parcel. It has been shown in § 6 that the fluid flow far from the
parcel broadens with increasing distance, as dictated by the form of the similarity
variable, ξ, defined by (6.1). It has also been shown that the axial velocity far from
the parcel has a return flow; see figures 2 and 6(a). It is apparent from figure 2 that
the broad return flow near the parcel is simply an axial continuation of the return
flow far ahead of and far behind the parcel.

The flow and pressure near the buoyant parcel are independent of the Ekman
number. As noted in § 2.2, this implies that these near-parcel solutions will remain
valid if forces other than viscous balance the Coriolis force and that the solution
presented in this section may have a larger range of validity than implied by constraint
(1.3). This conjecture is beyond the scope of the present paper, and will be investigated
subsequently.

Recall that the solutions presented § 6 are independent of the form of the buoyant
parcel, and sensitive only to the total buoyancy. It is very plausible to surmise that
those far-field solutions are valid for flow driven by a rigid body of identical buoyancy.
In that case, it seems likely that the return flow in the vicinity of a rigid parcel will
be broad, rather than concentrated in narrow Stewartson layers. This behaviour is in
general agreement with Stewarston’s (1952, 1953) analyses. The validity of this line of
reasoning may be tested by solving equation (48) of Vedensky & Ungarish (1994) for
the stream function in the equatorial plane outside the disk (i.e. for z = 0 and r > 1)
in the limit T� 1. This is not a trivial exercise.



154 D. E. Loper

8. Rise velocity
With the velocity in the vicinity of the parcel known explicitly it is straightforward,

in principle, to calculate the rise velocity of the parcel. However, this exercise is
complicated by the fact that there is more than one definition for this quantity. In a
similar study, Moffatt & Loper (1994) chose to define the rise velocity as the velocity
at the centre of the parcel. In what follows the rise velocity is defined as the average
of the velocity, weighted by the buoyancy distribution:

U p =

∫
Ψ (x)u(x) d3x∫
Ψ (x) d3x

. (8.1)

This definition is motivated by the realization that the flow is driven by the release
of gravitational potential energy, E, and that this may be expressed alternatively as
a point-wise integral or as a macroscopic dot product of the buoyancy force and the
rise velocity:

E = F ·U p =

[∫
Ψ (x)ĝ d3x

]
·U p =

∫
Ψ (x)u(x) · ĝ d3x. (8.2)

The velocity defined by (8.1) is easily evaluated; substituting (7.6) and (3.12) and
integrating, gives

U p = −
√

2π

16
[ĝ+ (Ω̂ · ĝ)Ω̂] +

1

2
√

2
Ω̂× ĝ. (8.3)

This velocity is in the same direction as that at the centre of the parcel (compare
(8.3) with (5.1)), but is smaller by a factor 2

√
2. The velocity consists of a motion in

the meridional plane, represented by the first term on the right-hand side, plus an
azimuthal motion, represented by the second term. The predicted trajectory in Earth’s
core lies on a parabola of revolution, as deduced by Moffatt & Loper (1994), based
on the velocity at the parcel centre.

The out-of-plane motion in (8.3) is normal to the gravitational vector and so does
not contribute to the rate of rise: the rise speed is given by the dot product of (8.3)
with the unit gravity vector:

U = 1
16

√
2π

√
1 + 3(Ω̂ · ĝ)2. (8.4)

The rise speed is a maximum when Ω and g are parallel or antiparallel; in this case,

U = 1
8

√
2π ≈ 0.5554. (8.5)

8.1. Comparison with the motion of rigid bodies

It is instructive to compare and contrast the different velocity–drag formulas for flow
driven by rigid bodies and fluid parcels. In rigid-body flow, a velocity is prescribed
and the drag is calculated, while in parcel flow the force is prescribed and the velocity
is calculated. In this subsection, the force–velocity relation for a rigid body will be
inverted and compared with the velocity–force relation for a fluid parcel.

Introducing a Cartesian coordinate system with the z-axis parallel to the rotation
axis, formulas (2.3), (2.5) and (2.6), quantifying the drag on a rigid body, may be
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combined into a single matrix formula:

 Dx

Dy

Dz

 = −16

3
ρΩa3


2π2

16 + π2

π3

2(16 + π2)
0

− π3

2(16 + π2)

2π2

16 + π2
0

0 0 1


 Ux

Uy

Uz

 ; (8.6)

see also formula (3.8) of Tanzosh & Stone (1995). Note that D and U are dimensional.
The drag is equal and opposite to the buoyancy force on a freely moving sphere:

Ds = 4
3
π(∆ρ)sa

3
sg, (8.7)

where (∆ρ)s is the (uniform) density deficit of the sphere and as is its radius. If
the total force on the sphere is the same as the buoyancy force on the parcel, then
4(∆ρ)sa

3
s = 3π(∆ρ)a3.

The inverse of (8.6) and (8.7) may be combined into a force–velocity relation for a
rigid body:  Ux

Uy

Uz

 = − π

4Ω

(
(∆ρ)s
ρ

) 8/π2 −2/π 0

2/π 8/π2 0

0 0 1


 gx

gy

gz

 . (8.8)

The corresponding dimensional matrix form of (8.3), quantifying the force–velocity
relation for a fluid parcel, is Ux

Uy

Uz

 = −
√

2π

16Ω

(
∆ρ

ρ

) 1/2 −2/π 0

2/π 1/2 0

0 0 1


 gx

gy

gz

 , (8.9)

where ∆ρ is the maximum density deficit at the centre of the Gaussian parcel.
The rise speed is independent of the size of the body, but is sensitive to the

magnitude of the density deficit. The axial speeds of the fluid and rigid bodies
become identical if ∆ρ = 2

√
2(∆ρ)s. Alternatively if ∆ρ = (∆ρ)s, the axial speed of the

fluid parcel is
√

2/4 times that of the sphere; it is more difficult for the fluid parcel to
move axially. While the centre of the fluid parcel moves as fast as a rigid body having
an identical density deficit, the remaining portions move more slowly for two reasons.
First, they have a smaller density deficit. Second, the requirement of no net axial flow
results in a negative axial speed at distances greater than 1.257; see figure 7. This
sweeps the fringes of the buoyant parcel backward causing the net axial speed to be
reduced.

The transverse speed of the fluid parcel is 50% of the axial speed, while the
transverse speed of the sphere is 81% of the axial speed; the fluid parcel has an even
more difficult time moving transversely. The lift force, as a fraction of the transverse
drag is greater than unity (4/π) for the fluid parcel, but less than unity (π/4) for the
rigid sphere; the fluid parcel veers off line more than the rigid sphere does during
transverse motion.

The difference in velocities quantified by (5.1) and (8.3) is an indication that the
parcel is deformed by the flow. The nature of that deformation is investigated in the
following section.
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9. Parcel deformation
It has been assumed that the parcel has a known and simple buoyancy distribution

at a given instant of time. The flow generated by this buoyancy, given by (7.1) or
equivalently (7.6), will deform the distribution. The purpose of this section is to
quantify this deformation and motivate the choice of a new, more general and robust
buoyancy distribution.

Ignoring molecular diffusion of buoyancy, the equation of conservation of buoyant
constituent may be expressed as

∂Ψ

∂t
= −ur · ∇Ψ, (9.1)

where the relative velocity ur is defined by (3.1) and ul has been expressed as u in
§§ 3–7. The time rate of change is measured by an observer moving with the centre
of the parcel. The neglect of diffusion is justified provided Ua � D, where D is the
coefficient of molecular diffusion. For many liquid systems D ≈ 10−9 m2 s−1; this small
value ensures that advection dominates diffusion in virtually all applications.

Combining (3.1), (7.6) and (8.3), yields

ur =

[
exp (−x2)− 1

2
√

2

]
Ω̂× ĝ−√π erf (xΩ) exp (−x2

⊥)x⊥ × ĝ

−π
4

(
f0 − f1 −

√
2

4

)
[ĝ+ (Ω̂ · ĝ)Ω̂]− π

2

[
f0 −

(
1 +

1

x2⊥

)
f1

]
x⊥ × (x⊥ × ĝ).

(9.2)

Advection of buoyancy takes differing forms depending on whether gravity and
rotation are aligned or not. These two cases are considered in turn in the following
two subsections.

9.1. Gravity and rotation antiparallel

In this case, (9.2) simplifies to

ur = u(x⊥)Ω̂−√π erf (xΩ) exp (−x2
⊥)Ω̂× x⊥, (9.3)

where

u(x⊥) = 1
2
π[(1− x2

⊥)f0(x⊥) + x2
⊥f1(x⊥)− 1

4

√
2]. (9.4)

The second factor on the right-hand side of (9.3) has no effect on an axisymmetric
density distribution, while the first translates it in the axial direction. The resulting
density distribution is

Ψ (x, t) = exp (−x2
⊥ − [xΩ − u(x⊥)t]2). (9.5)

The flow solution presented in § 7 is insensitive to the axial position of the buoyancy,
provided that its axial scale is less than that of the Taylor column. In this case the
momentum and material-advection equations are decoupled; a buoyant parcel of the
form (9.5) will produce a velocity field identical to that presented in § 7, provided |t| <
O(1/E). That is, that the flow solution presented in this paper will remain valid in the
antiparallel case as long as the parcel is not elongated as much as the Taylor column.

The horizontally averaged buoyancy, Ψh, quantified by

Ψh(xΩ, t) =

∫ ∞
0

Ψ (x, t)2x⊥dx⊥, (9.6)

is plotted as a function of vertical position in figure 8 for several values of time. The
effect of fluid motion is to smear the buoyancy in the vertical direction.
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Figure 8. Profiles of Ψh versus xΩ for several values of time.

9.2. Gravity and rotation not aligned

If rotation and gravity are not aligned, the situation is more complicated. Analysis
of the flow is facilitated by the introduction of a Cartesian coordinate system aligned
with rotation and gravity; let

ĝ = − cos (θ)Ω̂+ sin (θ)ĝ⊥, (9.7)

x̂⊥ = cos (φ)ĝ⊥ + sin (φ)n̂, (9.8)

where

n̂ = Ω̂× ĝ⊥. (9.9)

Now (9.2) may be written as

ur = uΩΩ̂+ ugĝ⊥ + unn̂ (9.10)

where

uΩ = 1
2
π[(1− x2

⊥)f0 + x2
⊥f1 − 1

4

√
2] cos (θ) +

√
π erf(xΩ) exp (−x2

⊥) sin (θ) sin (φ),

(9.11)

ug = − 1
4
π

[
(2− 2x2

⊥)f0 +

(
− 1

x2⊥
+ 2x2

⊥

)
f1 − 1

4

√
2

]
sin (θ)

+
√
π erf(xΩ) exp (−x2

⊥) cos (θ) sin (φ)− 1
4
π

[
f0 −

(
1 +

1

x2⊥

)
f1

]
sin (θ) cos (2φ)

(9.12)

and

un =

[
exp (−x2)− 1

2
√

2

]
sin (θ)−√π erf(xΩ) exp (−x2

⊥) cos (θ) cos (φ)

− 1
4
π

[
f0 −

(
1 +

1

x2⊥

)
f1

]
sin (θ) sin (2φ). (9.13)

The portions of the flow field involving sines or cosines of φ have no net effect on
the buoyancy distribution; these will be ignored. The remaining flow consists of three
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parts, quantified by the first terms on the right-hand sides of (9.11)–(9.13). The first
two act to spread the parcel in the (ĝ, Ω̂)-plane, much as the axial velocity component
did in the case presented in § 9.1. The third is a motion out of the (ĝ, Ω̂)-plane that is
limited to the confines of the buoyancy distribution. This will result in a shift in the
distribution, making it ‘lopsided’ but will not result in an overall change in the size
of the parcel in that direction. These deformations may be approximately modelled
with a buoyancy distribution of the form

Ψ (x, t) = [1 + q(x⊥, t)xn] exp (−x2
n − [xΩ − ξΩ(x⊥, t)]2 − [xg − ξg(x⊥, t)]2) (9.14)

where xg = x · ĝ⊥, xn = x · n̂,
ξΩ(x⊥, 0) = 1

2
π[(1− x2

⊥)f0 + x2
⊥f1 − 1

4

√
2] cos (θ) (9.15)

and

ξg(x⊥, 0) = 1
4
π

[
(2− 2x2

⊥)f0 +

(
− 1

x2⊥
+ 2x2

⊥

)
f1 −

√
2

4

]
sin (θ). (9.16)

This deformation will be investigated in a subsequent study.

10. Summary and discussion
10.1. Summary

The quasi-steady velocity and pressure fields induced by a buoyant parcel of Gaussian
shape rising in a rapidly rotating fluid of infinite extent have been investigated in
the limit that the Ekman number is much smaller than unity and Rossby number is
sufficiently small that the inertia terms may be neglected. The Ekman number is a
small parameter which is used to advantage in obtaining an analytic solution.

The linear problem is simple to solve in Fourier transform space; the challenge
is to invert the solution. An important contribution of this paper is to identify a
procedure for inverting this solution. The essence of the procedure is to express the
wavenumber vector in cylindrical coordinates, with the axial coordinate being parallel
to the rotation vector. With this decomposition, angular inversion integrals can be
performed exactly and axial inversion integrals can be carried out to any accuracy
desired. The velocity and pressure are found to dominant, i.e. unit, order. In addition
one term of order E, quantifying the small radial flow, is retained in the expression
for the velocity. The most general and useful expressions for velocity and pressure
are given by (4.20) and (4.21), which involve radial inversion integrals in k-space.

The radial inversion integrals contain the radial and axial coordinates (in physical
space) as parameters. These integrals have been represented graphically (involving a
single physical spatial variable) along the modal axis (in § 5) and in the far Taylor
column (in § 6). Moreover, these integrals can be evaluated analytically near the
parcel; the velocity and pressure in the vicinity of the parcel are found entirely in
closed form (in § 7).

The velocity along the modal axis consists of a motion out of the (ĝ, Ω̂)-plane which
is confined to the axial extent of the parcel and a motion in that plane which varies
on the scale of the Taylor column. Both these motions are even functions of the axial
coordinate. The pressure on the modal axis consists of a single term which varies
on both the scale of the parcel and the scale to the Taylor column. This pressure
is an odd function of the axial coordinate. Outside the parcel, the magnitudes of
the velocity and pressure decrease rapidly in magnitude relatively close to the parcel,
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reaching half their maximum values at E|xΩ | ≈ 0.055 and 0.094, respectively; see
figure 5. The velocity on the modal axis has no recirculating ‘Taylor slug’ such as
occurs in the case of forcing by a rigid body (Maxworthy 1970; Vedensky & Ungarish
1994). In spite of the rapid initial decrease in magnitude, the velocity and pressure
on the modal axis decay algebraically at large axial distance, varying as 1/E|xΩ | and
1/(E|xΩ |)2/3, respectively; see (5.12) and (5.13).

The velocity and pressure off the modal axis and far from the parcel are functions
of the similarity variable, ξ = x⊥/(E|xΩ |)1/3, divided by 1/E|xΩ | and 1/(E|xΩ |)2/3,
respectively. The velocity and pressure fields decay algebraically with increasing
distance from the parcel, as quantified by either variable. The integral of the pressure
over an area normal to the rotation axis is independent of axial distance and the
resulting pressure force balances the buoyancy of the parcel.

The analytic solutions for velocity and pressure in the vicinity of the parcel that
are presented in § 7 quantify a baroclinic balance within the parcel and a geostrophic
balance outside. The geostrophic balance satisfies the Taylor–Proudman theorem at
dominant order in powers of E. It is readily seen from (7.1) and (7.2) that there
are two distinct geostrophic balances, involving both velocity and pressure, which
are characterized by the radial extent of the associated variables and which depend
on the relative orientation of rotation and gravity. One balance occurs on the axial
extension of the parcel, and is associated with the swirl quantified by the first term
on the right-hand side of (7.1) (or the second of (7.6)). The other balance has a
much larger radial extent and involves the modulated radial motion, quantified by
the second term on the right-hand side of (7.1) (or the fourth of (7.6)). The remaining
geostrophic portion of the velocity, i.e. the last term of (7.1), represents rectilinear
return flow, necessary to satisfy conservation of mass, and being rectilinear does not
require a balancing pressure field. In the case that rotation and gravity are aligned,
the azimuthal modulation is absent.

The rise velocity of the parcel, quantified in § 8, is found to be significantly smaller
than the velocity of the parcel centre, albeit in the same direction. The fluid parcel
moves significantly more slowly than a rigid body having a density contrast equal to
the maximum of the parcel, but experiences a larger relative lift force than does a
rigid body.

The parcel is strongly deformed by the flow, but this deformation has little effect
when gravity and rotation are aligned. This deformation is quantified in § 9.1. In the
general case the solution presented in this paper is strictly valid only for times short
compared with the advection time due to deformation. However, the solution far from
the parcel is insensitive to the precise form of the parcel, and depends predominantly
on the total buoyancy.

10.2. Discussion

The solution procedure presented in this paper is a significant step toward realistic
quantification of the flow and pressure associated with small-scale buoyant structures
in large fluid bodies, such as the Earth’s outer core or fluid portions of other heavenly
bodies, as well as in rapidly rotating systems such as centrifuges. However, the present
solution has many limitations.

One serious limitation on the solution is inequality (1.3). The present procedure
can be generalized to include a linearized (Oseen-like) version of the inertia terms,
significantly increasing the range of validity of the solution. This step should be
relatively straightforward and is being undertaken at present.

Another limitation on the present solution is that it is kinematic, with the structure
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of the buoyant parcel fixed and prescribed. The flow field in the vicinity of the parcel is
complex, so a complete quantification of its effects would be quite difficult. However,
the gross effects of parcel deformation appear to be quantifiable.

A third limitation on the present solution is the assumption of steady flow. This is
reasonable for laboratory experiments having rapid rotation; however, it is a strong
limitation on natural geophysical flows. Unsteady effects need to be incorporated.
The initial-value problem might be tackled following the leads of Smith (1983) and
Price & Tan (1992).

The procedure described in this paper was initially discovered in the attempt to
solve the corresponding hydromagnetic problem, with application to the form of
small-scale flows in the outer core of the Earth. Hydromagnetic effects can be easily
added to the present formulation.

This work was supported in part by the National Science Foundation under
grant # EAR-9417481 and is contribution #417 of the Geophysical Fluid Dynamics
Institute.

Appendix A. Limits of validity of the linearized solution
The purpose of this appendix is to quantify the limits of the linearized analysis

of the main text. The full, nonlinear momentum equation may be expressed in
dimensionless form as

Ω̂× u+ ∇p = −Ψ ĝ+ E∇2u+ Ro[U p − u] ·
[
Ω̂
∂u

∂xΩ
+ ∇⊥u

]
. (A 1)

The terms on the left-hand side, representing the geostropic forces, are balanced
by those on the right-hand side, representing buoyancy, viscous and inertial forces,
respectively. The conditions under which the inertial force is negligibly small compared
with either the buoyancy or viscous force are to be determined.

Within the parcel, where the buoyancy force is of unit order, it is sufficient that Ro
be small compared with unity. The more stringent condition is that which involves
the structure of the Taylor column, outside the parcel, i.e. where Ψ ≈ 0. This
structure is determined by small but cumulative departures from the geostrophic
balance due to the action of the viscous force, which is of order E. Within the
Taylor column axial derivatives are of order E while velocities are of unit order. It
follows that the condition Ro � 1 is sufficient to ensure that the axial inertial term,
Ro[U p−u] · Ω̂∂u/∂xΩ , is negligibly small. It remains to quantify the transverse inertial
term, Ro[U p− u] · ∇⊥u. Although the fluid velocity in the Taylor column is nominally
of unit order for a distance of order 1/E from the parcel, it is seen in § 5 (see figure 5)
that the velocity in fact decays rapidly, leaving the dominant portion of the transverse
inertial term, Ro[U p · ∇⊥]u, to be quantified. Using (8.3),

U p · ∇⊥ = −
√

2π

16
ĝ · ∇⊥. (A 2)

This expression is of order sin θ where θ is the colatitude. The transverse inertial term
is of order Ro sin θ and is smaller than the viscous term provided Ro sin θ � E. Since
both terms being compared (i.e. Ro[U p · ∇⊥]u and E∇2⊥u) are linear in the velocity
vector, u, this condition on Rossby number is uniformly valid.
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Appendix B. Evaluation of Fourier integrals
The purpose of this appendix is to evaluate the Fourier inversion integrals in

the angular and axial directions. The integrals to be evaluated may be obtained by
substituting (3.13) and (4.1) into (3.11) and thence into (3.10). The result may be
expressed as

u(x) =
1

8π3/2

∫ ∞
0

v(k⊥; xΩ, x⊥) exp

(
−k

2⊥
4

)
k⊥dk⊥, (B 1)

with

v(k⊥; xΩ, x⊥) =

∫ ∞
−∞

w(k⊥, kΩ; x⊥)

k2
Ω + E2k6⊥

exp

(
−ixΩkΩ − k2

Ω

4

)
dkΩ, (B 2)

and

w(k⊥, kΩ; x⊥) = Ek2
⊥[kΩk⊥Ω̂× (y2 × ĝ) + k2

⊥y3]

+[k2
Ωy1Ω̂+ kΩk⊥y2]× [ĝ+ Ek2

⊥(Ω̂× ĝ)] (B 3)

where

y1(k⊥; x⊥) =

∫ π

−π
exp (−ik⊥x⊥k̂⊥ · x̂⊥) dφ, (B 4)

y2(k⊥; x⊥) =

∫ π

−π
k̂⊥ exp (−ik⊥x⊥k̂⊥ · x̂⊥) dφ, (B 5)

and

y3(k⊥; x⊥) =

∫ π

−π
k̂⊥ × (k̂⊥ × ĝ) exp (−ik⊥x⊥k̂⊥ · x̂⊥) dφ. (B 6)

The integration in the angular direction is performed exactly in §B.1. The axial
integration may be performed to any order, in integer powers of E, desired. The
axial integrals to dominant order plus the radial velocity component (at order E) are
evaluated in §B.2. One of the resulting five radial integrals may be evaluated exactly;
see §B.3.

B.1. Evaluation of the angular Fourier integral

Define φ as the angle from the projection of x onto the k⊥-plane, so that

k̂⊥ = cos (φ)x̂⊥ + sin (φ)Ω̂× x̂⊥. (B 7)

Making use of symmetry and of Gradshteyn & Rhyzik (1980, formulas 3.715.13 and
3.715.18, p. 402 plus their derivatives), the angular integrals may be expressed as

y1 = 2πJ0(x⊥k⊥), (B 8)

y2 = −2πiJ1(x⊥k⊥)x̂⊥ (B 9)

and

y3 = − 2π

x⊥k⊥
J1(x⊥k⊥)[ĝ+ (ĝ · Ω̂)Ω̂]− 2πJ2(x⊥k⊥)x̂⊥ × (x̂⊥ × ĝ), (B 10)

where Jn is a Bessel function of order n. The first of the three inversions in k-space is
completed and the function w(k⊥, kΩ; x⊥) has been determined without approximation.

B.2. Evaluation of the axial Fourier integral

To reduce the complexity of the mathematical expressions, in what follows those
terms deriving from (B 3) which are of dominant (unit) order in powers of E and
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those of order E which are involved in satisfaction of conservation of mass (i.e. the
cylindrical radial velocity) will be retained. That is, (B 3) will be simplified to

w(k⊥, kΩ; x⊥) = Ek3
⊥kΩΩ̂× (y2 × ĝ) + Ek4

⊥y3 + k2
Ωy1Ω̂× ĝ+ kΩk⊥y2 × ĝ. (B 11)

Higher-order accuracy in powers of E may be achieved at the cost of increased alge-
braic complexity. Since y1, y2 and y3 are independent of xΩ , the result of substituting
(B 11) into (B 2) may be expressed as

v(k⊥; xΩ, x⊥) = Ek3
⊥Ω̂× (y2× ĝ)V1 +Ek4

⊥y3V0 + y1(Ω̂× ĝ)V2 + k⊥(y2× ĝ)V1 (B 12)

where

Vn(k⊥; xΩ) =

∫ ∞
−∞

knΩ
k2
Ω + E2k6⊥

exp

(
−ixΩkΩ − k2

Ω

4

)
dkΩ. (B 13)

Using Gradshteyn & Rhyzik (1980, formula 3.952.4, p. 495)

V2 = 2
√
π exp (−x2

Ω)− E2k6
⊥V0. (B 14)

Since V0 = O(1/E)� 1 (see (B 21)), it is necessary to retain the last term in (B 14) to
maintain accuracy at order E. Substituting (B 14) into (B 12) and discarding terms of
order E2, leads to

v(k⊥; xΩ, x⊥) = Ek3
⊥Ω̂× (y2 × ĝ)V1 + Ek4

⊥y3V0 + y1(Ω̂× ĝ)2
√
π exp (−x2

Ω)

−y1(Ω̂× ĝ)E2k6
⊥V0 + k⊥(y2 × ĝ)V1. (B 15)

It remains to evaluate V0 and V1. Folding the integrals about kΩ = 0,

V0 = 2

∫ ∞
0

cos (kΩxΩ) exp (−k2
Ω/4)

k2
Ω + E2k6⊥

dkΩ (B 16)

and

V1 = −2i

∫ ∞
0

sin (kΩxΩ) exp (−k2
Ω/4)

k2
Ω + E2k6⊥

kΩdkΩ. (B 17)

Note that V0 is even and V1 is odd in xΩ . These integrals may be evaluated using
Gradshteyn & Ryzhik (1980, formulas 3.954.1 and 3.954.2 on p. 497 with β = 1/4,
a = xΩ and γ = Ek3⊥). Without approximation, the results are

V0 =
π exp (E2k6⊥/4)

2Ek3⊥

[
2 cosh (ExΩk

3
⊥) +

erf (xΩ − Ek3⊥/2)

exp (ExΩk
3⊥)

− erf (xΩ + Ek3⊥/2)

exp (−ExΩk3⊥)

]
(B 18)

and

V1 =
iπ exp (E2k6⊥/4)

2

[
2 sinh (ExΩk

3
⊥)− erf (xΩ − Ek3⊥/2)

exp (ExΩk
3⊥)

− erf (xΩ + Ek3⊥/2)

exp (−ExΩk3⊥)

]
.

(B 19)

Note that exp (E2k6⊥/4) ≈ 1 + O(E2); also,

erf(xΩ ± Ek3
⊥/2) ≈ erf(xΩ)± 1√

π
Ek3
⊥ exp (−x2

Ω) + O(E2). (B 20)

Now

V0 ≈ π

Ek3⊥
Hc −√π exp (−x2

Ω) + O(E) (B 21)
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and

V1 = iπHs + O(E2), (B 22)

where (from (4.6) and (4.7))

Hc(k⊥; xΩ) = cosh (ExΩk
3
⊥)− erf(xΩ) sinh(ExΩk

3
⊥)

and

Hs(k⊥; xΩ) = sinh (ExΩk
3
⊥)− erf(xΩ) cosh (ExΩk

3
⊥).

Substitution of (B 21) and (B 22) into (B 15) yields

v(k⊥; xΩ, x⊥) = iπEk3
⊥HsΩ̂× (y2 × ĝ) + [πk⊥Hc −√πk4

⊥ exp (−x2
Ω)]y3

+[2
√
π exp (−x2

Ω)− πEk3
⊥Hc]y1(Ω̂× ĝ) + iπk⊥(y2 × ĝ)Hs. (B 23)

Again, to simplify the analysis, the terms within the square brackets of (B 23) which
are of order E will be discarded. Using (B 8)–(B 10),

v(k⊥; xΩ, x⊥) = 4π3/2 exp (−x2
Ω)J0(x⊥k⊥)(Ω̂× ĝ)

+2π2Ek3
⊥HsJ1(x⊥k⊥)Ω̂× (x̂⊥ × ĝ) + 2π2k⊥HsJ1(x⊥k⊥)(x̂⊥ × ĝ)

−2π2

x⊥
HcJ1(x⊥k⊥)[ĝ+ (ĝ · Ω̂)Ω̂]− 2π2k⊥HcJ2(x⊥k⊥)x̂⊥ × (x̂⊥ × ĝ).

(B 24)

This completes the second of the three integrals in k-space.

B.3. Radial Fourier integrals

Substitution of (B 24) into (B 1) yields five radial integrals. One of these is easily
evaluated using Watson (1966, formula 13.3(4), p. 394 with a = x⊥, p2 = 1/4, and
ν = 0): ∫ ∞

0

J0(x⊥k⊥) exp

(
−k

2⊥
4

)
k⊥dk⊥ = 2 exp (−x2

⊥). (B 25)

Using this, (B 1) may be expressed as (4.3).

Appendix C. Integration of the pressure equation
The purpose of this appendix is to integrate (4.9) to obtain the pressure field.

The first step in this process is to eliminate the terms involving the Laplacian. It is
straightforward to verify that

∇2
⊥Vs12 =

8√
π
xΩx⊥ exp (−x2) +

1

x2⊥
Vs12 − Vs14 (C 1)

and

∇2
⊥Vc02 = −Vc04. (C 2)

Also

∇2
⊥(ĝ× Ω̂ · x̂⊥) = − 1

x2⊥
(ĝ× Ω̂ · x̂⊥). (C 3)

Using (C 1)–(C 3), (4.9) may be expressed as

∂p

∂xΩ
= [EVc04−exp (−x2)][ĝ ·Ω̂]+E

[
8√
π
xΩx⊥ exp (−x2)− Vs14

]
[ĝ×Ω̂ · x̂⊥]. (C 4)



164 D. E. Loper

The third term on the right-hand side of (C 4) contributes a small factor, of order
E, to the pressure because it has a limited axial extent; this term will be ignored.
However, the first and fourth terms contribute unit-order factors to the pressure
because of their large axial extent.

The second step in integrating (4.9), now written as (C 4), is to express the integrals
Vcmn and Vsmn in terms of derivatives with respect to xΩ . Combining derivatives of
(4.6) and (4.7) plus (B 25), (4.4) and (4.5), yields

EVc04 =
∂Vs01

∂xΩ
+ exp (−x2) (C 5)

and

EVs14 =
∂Vc11

∂xΩ
+
E

2
xΩ exp (−x2

Ω)

∫ ∞
0

J1(x⊥k⊥) exp

(
−k

2⊥
4

)
k⊥dk⊥. (C 6)

The second term on the right-hand side of (C 6) makes a contribution of order E
to the pressure; it may be neglected at dominant order. Equation (C 4) may now be
rewritten using (C 5) and (C 6); at dominant order this is

∂p

∂xΩ
=

∂

∂xΩ
(Vs01[ĝ · Ω̂]− Vc11[ĝ× Ω̂ · x̂⊥]). (C 7)

This equation is easily integrated and yields (4.10). Note that this solution satisfies
the condition that p→ 0 as xΩ → ±∞.
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